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LETTER TO THE EDITOR 

The mean size of Ising clusters: a confluent singularity analysis 

D S Gaunt and R Brak 
Department of Physics, King’s College, Strand, London WC2R 2LS, UK 

Received 9 July 1985 

Abstract. We re-examine, using a confluent singularity analysis, existing low-temperature 
series for the mean size of finite clusters for the pure spin-h nearest-neighbour Ising model 
in two dimensions. Although the triangular lattice is problematical, results for the honey- 
comb and square lattices may be interpreted as indicating a dominant exponent 0 = 
1.87 *0.04 (consistent with the theoretical prediction 0 = y +  p ) ,  together with competing 
analytic and non-analytic (A,  = 1.35 * 0.25) correction-to-scaling terms. 

In this letter we re-analyse existing low-temperature series expansions (Sykes and 
Gaunt 1976) for the mean size of finite clusters for the pure spin$ nearest-neighbour 
Ising model in d = 2 dimensions. However, in contrast to the earlier work, we include 
in our analysis the possibility of confluent correction-to-scaling terms. 

The motivation for this work was provided by recent speculation regarding the 
critical exponent 8 which characterises the dominant singular behaviour of the mean 
cluster size S. The speculation stems from an explicit theory of Ising systems in d = 1 + E 

dimensions developed, by Bruce and Wallace (1983), from the droplet phenomenology 
of phase transitions (Fisher 1967). As shown by Bruce and Wallace (BW),  standard 
droplet phenomenology predicts 

e = Y, 
whilst their explicit theory leads to 

e =  y+p .  (2) 

Here y and /3 are the usual critical exponents characterising the zero-field susceptibility 
and order parameter, respectively. 

The prediction (2) coincides with a conjecture due to Stauffer (1977). This conjec- 
ture is based upon a scaling droplet model due to Binder (1976), the validity of which 
depends on the coincidence of cluster and droplet properties. BW argue that their 
droplet picture of the Ising phase transition should be valid for E sufficiently small, 
i.e. in sufficiently low space dimensions. It seems likely that dimension d = 3 is not 
low enough since Monte Carlo (Muller-Krumbhaar 1974) and series studies (Sykes 
and Gaunt 1976) have established that Ising clusters percolate at a temperature below 
the Curie temperature T,. It is difficult therefore to identify clusters with droplets 
(whose size should diverge only at T,).  In d = 2 dimensions, however, it has been 
proved (Coniglio et aZ1977) that the percolation of Ising clusters with nearest-neighbour 
interactions only occurs at the critical temperature, suggesting that the critical properties 
of clusters and droplets might coincide. The consequences of this identification can 

0305-44701851 140879 + 06%02.25 @ 1985 The Institute of Physics L879 



Laao Letter to the Editor 

be tested by using the estimate 

6=1.91*0.01 d = 2  ( 3 )  

obtained by Sykes and Gaunt (1976) from biased dlog Pad6 approximant studies for 
the triangular lattice. Although this result is inconsistent with the phenomenological 
prediction ( l ) ,  8 = y = 1.75, it is fairly close to the prediction ( 2 )  of BW, 8 = y -t p = 1.875. 
(We have used the exact d = 2 values for y and p.) 

Although the discrepancy between ( 3 )  and (2) is small (less than 2 % ) ,  it is 3.5 
times larger than the uncertainty quoted in (3). It is clearly of crucial importance to 
decide if this discrepancy is real, or simply arises because the uncertainties in the 
numerical estimate ( 3 )  are unrealistically small. A persistent discrepancy would pre- 
sumably have fatal consequences for the explicit droplet theory of BW in two 
dimensions-at least in its present form. On the other hand and not unnaturally, 
therefore, BW are inclined to mistrust the estimate in (3). They speculate that the series 
expansions may be too short to take proper account of the ‘droplets within droplets’ 
structure which is an essential ingredient of their (and any scale invariant) picture of 
the critical region. 

To be specific, Sykes and Gaunt (1976) assumed that 

S (  U )  - C( U, - (U + U,-) (4) 

where U = exp( -45/ kT) is a low-temperature Ising variable, U, is its (exactly known) 
value at T, and C is a constant amplitude. Series expansions were derived? through 
U’’, 214 (2’ = U )  and U’’ for the triangular, honeycomb and square lattices, respectively. 
The series were analysed using the ratio and biased dlog Pad6 approximant techniques 
(Gaunt and Guttmann 1974). Here we replace (4) by an asymptotic form which 
includes both analytic and non-analytic correction-to-scaling terms: 

S(U)- C (  U, - ~ ) - ‘ [ 1  + A (  U, - U)*!+ B ( u , -  U)], (5 )  

where A and B are non-universal amplitudes and A, is the dominant non-analytic 
correction-to-scaling exponent. 

Presumably S (  U )  is in the d = 2 Ising universality class. Within the renormalisation 
group ( RG) framework, analytic correction terms, such as B( U, - U), arise (Aharony 
and Fisher 1980, 1983) from the nonlinearity of the scaling fields and not from the 
leading irrelevant variables. Estimates of the non-analytic correction-to-scaling 
exponent A I ,  calculated by RG methods, include 

1.410.8 (Baker et al 1978$) 
1.3i0.2,  1.40 (Le Guillou and Zinn-Justin 1980). 

Although predicted by RG theory, non-analytic terms have never been observed for 
the spin-; d = 2  nearest-neighbour Ising model. For all the functions studied so far, 
their amplitude vanishes. However, their presence in d = 2  systems in the Ising 
universality class has been reported. Thus, for the spin-1 Ising and hard-square models, 
Adler and Enting (1984) have used 45 and 24 term series, respectively, to estimate 

l .0<Al<1.3 .  (7 )  

t Note that our S corresponds to S* in the notation of Sykes and Gaunt. 
$This ‘corrected’ value is quoted by Adler and Enting (1984), Barma and Fisher (1984) and Baker and 
Johnson (1984). 
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Barma and Fisher (1984, 1985) have used partial differential approximants to study 
21 term (two-variable) series for the Klauder and double Gaussian models both of 
which are believed to be in the Ising universality class. They conclude that 

(8) A ,  = 1.35 f 0.25. 

Using not entirely rigorous arguments, Nienhuis (1982) has conjectured A, = $ but, as 
argued by Barma and Fisher, the interpretation of this result may be subtle. 

In this letter, we re-analyse the existing series for S ( u )  using a method employed 
extensively by Adler and by Privman (see, e.g., Adler et a1 1983, Privman 1983, Adler 
and Enting 1984). Barma and Fisher (1985) have criticised any single-variable analysis 
in which the critical point is not known exactly because of the difficulty in disentangling 
reliably the effects of irrelevant operators from those due to the nonlinear scaling fields. 
Fortunately, in our case, the exact critical point is available and we find some tentative 
evidence for the presence of non-analytic (as well as analytic) correction-to-scaling 
terms confluent with a dominant exponent 8 whose value is consistent with the 
prediction 8 = -y+P = 1.875. 

In this method the original series in U is first transformed to one in 

y = 1 - (1 - u / u , ) A ,  

G,(yJ= A(1 -y)(d/dy) In S ( Y )  

after which the series for 

is calculated for a range of values of A. For each value of A, estimates of 8 are obtained 
by evaluating several central Pad6 approximants to G,(y) at y = 1. One might antici- 
pate, and experience with test series confirms (Privman 1983), a region of convergence 
in the (8, A) plane around the correct (8, A,) point. Plots obtained by this technique 
are given in figures 1, 2 and 3 for the honeycomb, square and triangular lattices, 
respectively. In interpreting these figures, we have been guided by comparison with 
the known behaviour of test series. 

For the honeycomb lattice (figure l), there is a rather broad region of convergence 
centred around A- 1.35, 8 - 1.C 1 and a ‘weak’ pole structure (Privman 1983) at A% 1. 
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Figure 1. e ( A )  plot for the mean size of Ising clusters on the honeycomb lattice. 
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Figure 2. 8 ( A )  plot for the mean size of Ising clusters on the square lattice. 
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Figure 3. €‘(A) plot for the mean size of Ising clusters on the triangular lattice. 

In the case of the square lattice (figure 2),  there is a convergence region close to 
A - 1.35, 6 - 1.88 with a weak pole structure at A 3  1. The behaviour of the honeycomb 
and square lattices is thus rather similar, namely a convergence region around A - 1.35, 
6 - 1.87-1.88 with a weak pole structure not far from A = 1. 

The behaviour observed for the triangular lattice (figure 3)  is rather different. There 
is now a ‘broad’ pole structure at A - 1.4 and a convergence region lying close to A = 1 
with a corresponding exponent of 1.91. Since A = 1 is equivalent to the usual biased 
dlog Pad6 analysis, this explains why the estimate (3)  of Sykes and Gaunt was so 
precise. However, the presence of the very broad pole structure near A - 1.4 suggests 
to us that the convergence region at A = 1 may not correspond to an accurate estimate 
of the dominant exponent 6 and that, consequently, Sykes and Gaunt may have 
underestimated the uncertainties in (3). We have found such an interpretation to be 
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consistent with our own extensive study of test series. Similar behaviour is also exhibited 
in figure 3 of Privman (1983). 

In summary, we have employed a method much used by Adler and by Privman to 
reanalyse existing low-temperature series expansions for the mean size of Ising clusters 
in d = 2 dimensions. This is the first attempt to take account of confluent correction-to- 
scaling terms for these series. Although the results are difficult to interpret and not 
particularly impressive, they are more revealing than those obtained with the biased 
dlog Pad6 and ratio techniques alone. For example, from figure 3, which is for the 
triangular lattice, we can understand from the convergence region at A = 1 how the 
high precision estimate (3) for the dominant exponent 8 first arose. However, as 
mentioned above, the study of test series reveals that the presence of a broad pole 
structure (such as that exhibited in figure 3 near A, - 1.4) can seriously affect the 
reliability of such plots in neighbouring convergence regions and thus lead to over- 
optimistic uncertainty estimates. On the other hand, there are no such broad pole 
structures for the honeycomb and square lattices, so from the convergence regions 
indicated in figures 1 and 2 we estimate 

e = 1.87 * 0.04, (9) 

with a non-analytic correction-to-scaling term having an exponent 

A, = 1.35k0.25. 

The estimate (9), unlike the previous estimate (3) ,  is consistent with the prediction 
8 = y + P  = 1.875. The estimate (10) is identical with the series estimate, (8), for the 
Klauder and double Gaussian models and is consistent with the RG estimates, (6): the 
series estimate, (7), for the spin-1 Ising and hard-square models, and with the Nienhuis 
conjecture A, = $. Assuming our interpretation of figures 1 and 2 is correct, this seems 
to be the first time that non-analytic correction-to-scaling terms have been detected 
for the pure d = 2 spin-; nearest-neighbour Ising model. We speculate that a possible 
explanation may somehow be related to the fact that while other work has concentrated 
on thermodynamic functions (such as the zero-field susceptibility), the mean size 
studied here characterises a ‘geometrical’ property of king clusters. 

As we have seen, the plots are very difficult to interpret, particularly as the series 
are of different lengths and there is competition between the leading analytic and 
non-analytic correction terms with their relative strengths changing from lattice to 
lattice. (For example, the convergence region near A = 1 in figure 3 may indicate that 
the analytic correction term has a relatively larger amplitude for the triangular lattice 
than it has for the honeycomb and square lattices.) The effect of higher-order correc- 
tions is also hard to assess. However, at the very least, we believe our work shows 
that the theoretical prediction 8 = y + P and the existing series expansion data are not 
necessarily inconsistent. A discrepancy of around 2% may be accounted for by the 
neglect of confluent correction-to-scaling terms. 

It has been suggested that additional uncertainties due to the shortness of the series 
and the consequent inadequate treatment of the nested droplet structure are also 
possible. In this context, BW point out that a study which (accidentally or deliberately) 
includes, in the definition of cluster size, all the lattice sites contained within a cluster 
boundary (sites which may accommodate nested clusters) will yield a cluster size 
exponent e’> 8. However, Sykes and Gaunt (1976) did not use such a definition. In 
their definition of cluster size, the size of a connected configuration of ‘down’ spins 
depends only on the number of ‘down’ spins in that configuration. Furthermore, we 
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note that it is very easy for a connected cluster of ‘down’ spins to contain within its 
boundary a connected cluster of ‘up’ spins but be, nevertheless, too small to accommo- 
date a nested cluster of ‘down’ spins. (On the triangular lattice, the simplest example 
is a hexagon of six ‘down’ spins surrounding a connected cluster of one ‘up’ spin.) A 
connected cluster of ‘down’ spins must be quite large before it can accommodate even 
the smallest nested cluster, namely a single ‘down’ spin. On the triangular lattice, a 
single ‘down’ spin can just be nested inside a connected cluster of twelve ‘down’ spins 
in the shape of a regular hexagon. However, this configuration does not contribute 
to the S ( u )  series until U’’, which is well beyond the last available coefficient, U’’. 
Similarly, for the honeycomb and square lattices, the simplest nested clusters do not 
contribute until z2’ and U’*, respectively, whereas the last available terms are zI4 and 
ulO. In other words, nested clusters have not so far contributed to any of the series 
studied here. Nevertheless, the existing series are capable of yielding what is presum- 
ably the correct result ( 0  = y +  p ) .  Evidently, the key thing is for the series expansions 
to capture a good estimate for the distribution of holes within a droplet so that the 
true droplet volume (i.e. the number of ‘down’ spins it contains) must be correctly 
estimated. 

We have benefited from helpful discussions and correspondence with J Adler, M E 
Fisher, D Stauffer, M F Sykes and D J Wallace. RB is grateful to the SERC for the 
award of a research studentship. 
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